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1 Introduction

1.1 PDE Methond Binary and Barrier Options
This report explores numerical and analytical methods for pricing two classes of exotic options under the Black–Scholes
framework: binary (digital) options and knock-out barrier options. Both instruments pose challenges due to discon-
tinuities in payoff or path-dependence, making them ideal testbeds for comparing pricing methodologies.

For binary call options, which pay a fixed amount if the underlying price exceeds a strike K at maturity, we implement
Monte Carlo (MC) simulation, derive the closed-form pricing formula, and numerically solve the pricing PDE using
implicit and Crank-Nicolson finite difference methods (FDM) after transforming it into the heat equation. Sensitivity
analyses on volatility σ and price S reveal Delta and Vega characteristics.

For knock-out barrier options, specifically the up-and-out call, the payoff vanishes if the asset ever breaches a barrier
B before maturity. We compare closed-form pricing under continuous monitoring to MC simulation under discrete
monitoring. To reconcile the two, we apply the Broadie–Glasserman barrier adjustment technique, correcting for the
missed overshoots in discrete sampling. We perform both parameter sensitivity studies and a convergence analysis
of the MC method to validate the theoretical O(1/

√
M) error rate.

1.2 Calibration SP500 Implied Volatility using the Heston Model
Stochastic volatility models provide a more flexible framework than Black–Scholes for capturing empirical features of
option markets, such as the implied volatility smile and skew. Among these models, the Heston model is widely used
in both academia and industry due to its tractable semi-closed pricing formula and parsimonious parameterization.

The rest of report explores the theoretical structure and practical implementation of the Heston model through three
main stages:

• We first derive the Heston SDEs in logarithmic coordinates using Itô’s lemma, which leads to a transformed
system for (Xt, Yt) := (logSt, log Vt), improving numerical robustness and interpretability.

• Next, we implement a vanilla option pricing engine on a strike–maturity grid using both the semi-closed Heston
formula and a Monte Carlo approach with Quadratic–Exponential (QE) discretization. From the generated
call price surfaces, we invert Black–Scholes to compute the implied volatility surfaces, thereby linking Heston
model outputs with market-observable metrics.

• Finally, we conduct model calibration to SP500 market implied volatility data. Using least-squares minimization
on implied volatilities, we estimate optimal Heston parameters on two separate trading dates. Calibration
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diagnostics are performed via residual plots, error metrics, and parameter stability analysis. We also propose
a theoretically grounded extension for improved fit.

This integrated approach bridges stochastic calculus, numerical implementation, and empirical calibration, showcas-
ing both the strengths and limitations of the Heston model in practice.

2 Method

2.1 Binary options
2.1.1 Derivation of the Black-Scholes PDE for Binary Call Option

Under the risk-neutral probability measure Q, the asset price St follows the stochastic differential equation:

dSt

St
= r dt+ σ dBt

Let Cd(t, S) denote the price of the binary (digital) call option at time t when the asset price is S. The payoff of the
binary call option at maturity T with strike price K is given by

Cd(T, S) =

{
1, if S ≥ K

0, if S < K
= 1[K,∞)(S)

To derive the PDE satisfied by Cd(t, S), we apply Itô’s lemma to the function Cd(t, St):

dCd =

(
∂Cd

∂t
+ rSt

∂Cd

∂S
+

1

2
σ2S2

t

∂2Cd

∂S2

)
dt+ σSt

∂Cd

∂S
dBt

Now, construct a delta-hedged portfolio
Πt = Cd(t, St)−∆tSt

and choose ∆t =
∂Cd

∂S to eliminate the stochastic term involving dBt. Then, the portfolio evolves as

dΠt =

(
∂Cd

∂t
+ rSt

∂Cd

∂S
+

1

2
σ2S2

t

∂2Cd

∂S2
− rSt

∂Cd

∂S

)
dt

Under the no-arbitrage principle, the portfolio must earn the risk-free rate, so:

dΠt = rΠt dt = r(Cd − St
∂Cd

∂S
)dt

Equating both expressions and simplifying, we obtain the Black-Scholes PDE:

∂Cd

∂t
+ rS

∂Cd

∂S
+

1

2
σ2S2 ∂

2Cd

∂S2
= rCd

with the terminal condition:

Cd(T, S) = 1[K,∞)(S)

This PDE has the same structure as the classical Black-Scholes equation for vanilla European options, but the
terminal condition is specific to the binary call payoff.
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2.1.2 Analytical Transformation of the Black-Scholes PDE (Based on Appendix A)

In order to obtain analytical or numerically tractable solutions to the Black-Scholes PDE, we apply a sequence of
variable transformations that progressively simplify the equation. The following derivation is based on the steps
outlined in Appendix A of the course material.

Step 1: Time reversal substitution Let τ := T−t denote the time to maturity. Define the transformed function

gτ (S) := Vt(S),

so that
∂tVt(S) = −∂τgτ (S).

Substituting into the standard Black-Scholes PDE

∂tVt + rS∂SVt +
1

2
σ2S2∂2SSVt = rVt,

we obtain:
−∂τgτ + rS∂Sgτ +

1

2
σ2S2∂2SSgτ = rgτ . (14)

Step 2: Remove the nonhomogeneous term Define a new function by applying an exponential discounting
factor:

fτ (S) := erτgτ (S).

Differentiating with respect to τ :

∂τfτ = rerτgτ + erτ∂τgτ = rfτ + erτ∂τgτ .

Hence,
∂τgτ = e−rτ (∂τfτ − rfτ ).

Substitute into Equation (14) and multiply through by erτ :

−∂τfτ + rS∂Sfτ +
1

2
σ2S2∂2SSfτ = 0. (15)

Step 3: Logarithmic substitution Now define the logarithmic variable x := log(S) and the new function

ψτ (x) := fτ (S).

Using the chain rule, we compute:

∂Sfτ =
1

S
∂xψτ , ∂2SSfτ =

1

S2

(
∂2xxψτ − ∂xψτ

)
.

Substituting into Equation (15) and simplifying, we obtain:

−∂τψτ +

(
r − 1

2
σ2

)
∂xψτ +

1

2
σ2∂2xxψτ = 0. (16)

Step 4: Reduction to the heat equation We start from the transformed Black-Scholes PDE in logarithmic
space, as given by Equation (16), and apply an exponential transformation:

ψ(τ, x) = ϕ(τ, x) · eαx+βτ

• Time derivative:
∂τψ = ∂τ

(
ϕ · eαx+βτ

)
= eαx+βτ (∂τϕ+ βϕ)

• First spatial derivative:
∂xψ = ∂x

(
ϕ · eαx+βτ

)
= eαx+βτ (∂xϕ+ αϕ)
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• Second spatial derivative:

∂2xxψ = ∂2xx
(
ϕ · eαx+βτ

)
= eαx+βτ

(
∂2xxϕ+ 2α∂xϕ+ α2ϕ

)
Substituting into the PDE and factoring out the exponential term, dividing by the common exponential factor and
grouping terms we get:

∂τϕ =

(
r − σ2

2
+ σ2α

)
∂xϕ+

σ2

2
∂2xxϕ+

[
β −

(
r − σ2

2

)
α− σ2

2
α2

]
ϕ (1)

In order to reduce the PDE to the standard heat equation form:

∂τϕ =
σ2

2
∂2xxϕ

we must require that the coefficients of the ∂xϕ and ϕ terms vanish:

{
r − σ2

2 + σ2α = 0

β −
(
r − σ2

2

)
α− σ2

2 α
2 = 0

From the first condition:

α =
1

2
− r

σ2

Substitute into the second:

β = (r − σ2

2
)α+

1

2
α2σ2.

This completes the transformation to the standard heat equation with known coefficients. Finally, arriving at the
standard heat equation:

∂τϕτ (x) =
σ2

2
∂2xxϕτ (x). (17)

This transformation enables us to apply analytical methods such as convolution with the Green’s function to obtain
closed-form solutions.

2.1.3 Analytical Solution of the Binary Call Option PDE

We derive the closed-form solution to the binary (digital) call option price Cd(t, x) by transforming the Black-
Scholes PDE obtained in 2.1.1. The derivation relies on the change-of-variable techniques discussed in Appendix
A, particularly the steps leading from the Black-Scholes PDE (Equation 13 in the appendix) to the heat equation
(Equation 17), details of derivation seen in 2.1.2.

Step 1: Problem setup We begin with the Black-Scholes PDE satisfied by the pricing function Cd(t, x):

∂Cd

∂t
+ rx

∂Cd

∂x
+

1

2
σ2x2

∂2Cd

∂x2
= rCd,

with the terminal condition
Cd(T, x) = 1[K,∞)(x).
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Step 2: Change of variables to transform the PDE We perform the same transformation as in Appendix A
to convert the Black-Scholes PDE into the heat equation:

• Define the time-to-maturity variable τ := T − t.

• Introduce a discounting factor: Cd(t, x) = e−rτf(τ, x).

• Change variables by setting x = ey, and define ψ(τ, y) := f(τ, ey).

• Introduce a new function ϕ(τ, y) via ψ(τ, y) = ϕ(τ, y)eαy+βτ with appropriate constants α and β.

With suitable choices α = − r− 1
2σ

2

σ2 and β = − 1
2α

2σ2, this sequence of transformations yields the standard heat
equation:

∂ϕ

∂τ
=
σ2

2

∂2ϕ

∂y2
.

Step 3: Solve the heat equation via convolution with the Green’s function The initial condition in
ϕ-space becomes

ϕ(0, y) =

{
e−αy, y ≥ logK,

0, y < logK.

Solving the heat equation using the method of convolution with the Green’s function of the heat equation yields:

ϕ(τ, y) = e−αy+ 1
2α

2σ2τΦ(d−(τ)),

where Φ is the standard normal cumulative distribution function and

d−(τ) :=
(r − 1

2σ
2)τ + log(x/K)

σ
√
τ

.

Step 4: Recover the original pricing function Substituting back all changes of variables, we recover the binary
call option price:

Cd(t, x) = e−r(T−t)Φ

(
(r − 1

2σ
2)(T − t) + log(x/K)

σ
√
T − t

)
= e−r(T−t)Φ(d−(T − t)).

This is the closed-form analytical solution to the pricing problem for the binary call option under the Black-Scholes
model.

2.1.4 Monte Carlo, Analytical and Numerical Approaches to Binary Option Pricing

To investigate the pricing and sensitivity of binary (digital) options, we employed three numerical and analytical
approaches:

• Monte Carlo simulation: We simulated asset price paths under the Black-Scholes risk-neutral measure using
geometric Brownian motion. The binary payoff was computed at maturity for each path, and the expected
discounted payoff yielded the simulated option price.

• Closed-form solution: For benchmarking, we implemented the known analytical pricing formula for binary
call options under the Black-Scholes framework. This solution served as the reference surface for evaluating
the accuracy of numerical methods.

• Finite Difference Methods (FDM): Two PDE-based approaches were used to solve the Black-Scholes PDE
transformed into the heat equation via logarithmic and exponential substitutions:

– The fully implicit (backward Euler) scheme;

– The Crank-Nicolson scheme (a weighted average of explicit and implicit schemes).

These schemes were applied to the transformed heat equation using backward time-stepping and spatial dis-
cretization. The resulting solutions were then inverted to recover the option pricing surfaces c(S, t).
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After obtaining the pricing surfaces from each method, we compared their accuracy against the closed-form bench-
mark using 3D absolute error surfaces and 2D heatmaps. Error metrics such as mean absolute error (MAE), mean
squared error (MSE), and maximum absolute error were tabulated to quantify differences.

Beyond pricing accuracy, we conducted a sensitivity analysis on the PDE-based methods:

• Vega analysis: The effect of volatility changes on pricing was studied by solving the PDEs under varying
values of σ. Numerical differences were used to estimate Vega curves.

• Delta analysis: The sensitivity of the option price with respect to the underlying asset price S was computed
numerically using central finite differences on the FDM pricing grids, yielding ∆(S) curves for fixed time slices.

These combined steps allowed us to evaluate not only the correctness of each numerical method, but also their
stability and robustness under changing model parameters.

2.2 Knock-out Barrier options
2.2.1 Analytical Solution Derivation for Knock-Out Barrier Option

We now derive the closed-form pricing formula for an up-and-out barrier call option using the general path-dependent
integral representation introduced in Lemma A.1.

Step 1: Define the payoff

The payoff of a knock-out call option is path-dependent, and can be written as

C = (ST −K)+ · 1{maxt∈[0,T ] St<B},

which means the option only pays off if the final price ST > K and the barrier B has not been breached at any time
before T .

Equivalently, we define the payoff function ϕ in the bivariate form:

ϕ(M0
T , ST ) = (ST −K)+ · 1{M0

T<B}.

Step 2: Variable transformation

Following the setup in Lemma A.1, we map the maximum and final value into log space via

ST = S0e
σx, M0

T = S0e
σy,

so that the payoff function becomes:

ϕ(x, y) = (S0e
σx −K)

+ · 1{
y< 1

σ log
(

B
S0

)}.

Step 3: Plug into the general pricing formula

We now substitute this ϕ(x, y) into the general pricing identity from Lemma A.1:

E[C] = e−rT ·
[∫ ∞

0

∫ ∞

y

ϕ(S0e
σx, S0e

σy) · (2x− y) · f(x, y) dx dy + · · ·
]
,

where f(x, y) denotes the joint density of the drifted Brownian motion and its running maximum.

Because of the barrier condition, the upper limit of y is truncated to log(B/S0)/σ.

Step 4: Derive the closed-form result
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By evaluating the above integrals, incorporating the Gaussian kernel and standard normal CDFs, we obtain the
closed-form result for the up-and-out call:

C(t, T, St,M
0
t ) = St · 1{M0

t <B}

{
Φ

(
δT−t
+

(
St

K

))
− Φ

(
δT−t
+

(
St

B

))}
−
(
B

St

)1+2r/σ2

St · 1{M0
t <B}

{
Φ

(
δT−t
+

(
B2

KSt

))
− Φ

(
δT−t
+

(
B

St

))}
− e−r(T−t)K · 1{M0

t <B}

{
Φ

(
δT−t
−

(
St

K

))
− Φ

(
δT−t
−

(
St

B

))}
+

(
St

B

)1−2r/σ2

e−r(T−t)K · 1{M0
t <B}

{
Φ

(
δT−t
−

(
B2

KSt

))
− Φ

(
δT−t
−

(
B

St

))}
,

with

δτ±(z) =
1

σ
√
τ

(
log z +

(
r ± σ2

2

)
τ

)
.

This result demonstrates that the knock-out barrier option can be priced explicitly through the probabilistic maximum
representation and careful variable transformation of the standard GBM process.

2.2.2 Monte Carlo and Analytical Approaches to Barrier Option Pricing

Adjusted Barrier Approach To account for the fact that the MC simulation monitors the barrier at discrete
time intervals (rather than continuously), we adopt the adjusted barrier technique proposed by Broadie et al., where
the original barrier level H is shifted upward. The closed-form solution is evaluated using the following adjusted
barrier:

Cm(H) ≈ C
(
H · e+β1σ

√
T/m

)
, with β1 ≈ 0.5826

This correction compensates for the tendency of discretely monitored MC paths to underestimate the frequency of
barrier breaches, especially between monitoring points.

Sensitivity Analysis. We first conduct a sensitivity analysis by varying key model and option parameters: the
strike price K, barrier level B, time to maturity T , volatility σ, and interest rate r. For each parameter, we compute
and compare the option prices obtained from:

• Standard Monte Carlo simulations using M discrete time steps and N sample paths;

• The adjusted closed-form formula with barrier H · e+β1σ
√

T/M .

This allows us to assess how robust the MC method is across different market and contract conditions, and how
closely it tracks the analytical benchmark under parameter shifts.

Convergence Analysis. We then evaluate the convergence rate of the MC method with respect to the number of
time steps M . According to theory, the adjusted MC estimator satisfies the following asymptotic behavior:

|Cm(H)− C(H · e+β1σ
√

T/m)| = O

(
1√
m

)
Taking logarithms on both sides yields:

log10(error) = −1

2
log10(m) + const.

This implies that plotting the log absolute error against log10(m) should produce a straight line with slope approx-
imately −0.5. To verify this, we compute the absolute pricing error across a range of m values, averaging results
over multiple simulations to reduce variance. We then fit a linear regression to the log10(error) vs. log10(m) data to
confirm whether the observed slope is consistent with the theoretical convergence rate.
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2.2.3 Implicit FDM vs Closed-Form Barrier Option Pricing and Sensitivity Analysis

We employ an implicit finite difference scheme (FDM) to numerically solve the pricing problem of an up-and-out
barrier call option. To verify the correctness and consistency of the implementation, we first compare the option
price surface computed via FDM with the analytical closed-form solution derived from barrier option theory. This
comparison serves as a benchmark to validate the numerical approach.

The computational framework follows a log-space transformation of the Black-Scholes PDE into a standard heat
equation form, allowing stable and efficient implicit time-stepping. Boundary and initial conditions are appropriately
set according to the transformed payoff structure, incorporating the barrier constraint directly via Dirichlet conditions
in the finite difference grid.

The methodology proceeds in three main stages:

• Price Surface Comparison: We generate the full option price surface V (S, t) using both the closed-form
formula and the implicit FDM scheme. These surfaces are visualized over a range of asset prices S and times t,
and visually compared to ensure that the FDM result converges to the analytical benchmark within a reasonable
tolerance.

• Sensitivity Analysis: Next, we investigate the sensitivity of the option price with respect to three key
parameters: the strike price K, the barrier level B, and the volatility σ. For each parameter, we vary its value
across a representative range while keeping others fixed. The resulting option prices computed by both FDM
and the closed-form method are plotted for comparison. This highlights how each parameter influences pricing
behavior and whether the numerical scheme correctly reflects the underlying financial sensitivity.

• Delta Curve Extraction: Finally, we compute the option delta ∆ = ∂V
∂S as a function of the underlying

asset price S. For the FDM result, ∆ is obtained via central finite differences on the computed price grid at
t = 0. For the closed-form benchmark, we apply numerical differentiation to the analytical price formula. The
resulting delta curves are compared, emphasizing the barrier effect on hedging sensitivity near the barrier level.

This numerical methodology enables a robust and interpretable study of the barrier option structure, while also
confirming that the implicit discretization aligns well with known analytical behavior.

2.3 Calibration SP500 Implied Volatility using the Heston Model
2.3.1 Dynamics in logarithmic coordinates

(a) SDEs for Xt = lnSt and Yt = lnVt. Under the risk–neutral Heston model

dSt = r St dt+ St

√
Vt dBt,

dVt = κ(θ − Vt) dt+ σ
√
Vt dWt,

d⟨B,W ⟩t = ρ dt,

apply Itô’s formula to Xt = lnSt and Yt = lnVt:

dXt =
1

St
dSt −

1

2

1

S2
t

(dSt)
2 =

(
r − 1

2Vt
)
dt+

√
Vt dBt

dYt =
1

Vt
dVt −

1

2

1

V 2
t

(dVt)
2 =

[
κ(θe−Yt − 1)− 1

2σ
2e−Yt

]
dt+ σe−Yt/2 dWt

Equivalently, in terms of Vt,

dYt =

[
κθ − 1

2σ
2

Vt
− κ

]
dt+

σ√
Vt
dWt.

(b) Why the log-variance coordinate is convenient.

• Positivity handled automatically: Vt ≥ 0 corresponds to Yt ∈ R, eliminating boundary constraints in
simulations and optimisation.
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• Numerical stability: The diffusion coefficient σe−Yt/2 varies smoothly, reducing discretisation error relative
to

√
Vt.

• Analytic compatibility: Many semi-closed formulas for Heston (e.g. characteristic functions, FFT pricing)
are expressed in lnS and lnV , so the log coordinate simplifies subsequent transforms.

2.3.2 Vanilla option pricing experiments

We begin by fixing a Heston parameter vector Θ = (κ, θ, ρ, σ, v0) and a continuously-compounded risk–free rate r.
A rectangular grid G = {(Ki, Tj)}j=1,...,nT

i=1,...,nK
of strikes and maturities is then constructed. For every node we compute

Cmodel
ij = e−rTj E

[
(STj −Ki)

+
]
,

using two independent engines:

Monte-Carlo engine (Quadratic–Exponential scheme) The variance process is advanced over the step ∆t =
Tj/N by the Quadratic–Exponential (QE) method of Andersen (Andersen, 2006).

Semi-closed Heston formula The analytic benchmark employs the well-known representation

CCF(S0,K, T ) = S0 P1 − K e−rT P2,

P1 =
1

2
+

1

π

∫ ∞

0

ℜ
(
e−iu lnK ϕ(u− i;T )

iu F

)
du,

P2 =
1

2
+

1

π

∫ ∞

0

ℜ
(
e−iu lnK ϕ(u;T )

iu

)
du,

F = S0e
rT .

where the characteristic function of lnST is

ϕ(u;T ) = exp
{
iu
(
lnS0 + rT

)
+
κθ

σ2

[
(ξ − d)T − 2 ln

(
1−g2e

−dT

1−g2

)]
+
v0
σ2

(ξ − d)
1− e−dT

1− g2e−dT

}
,

with ξ = κ − iρσu, d =
√
ξ2 + σ2(u2 + iu), g2 = (ξ − d)/(ξ + d). We compute the oscillatory integrals using the

adaptive Gauss–Lobatto routine of Cui et al. (2017). The two call-price surfaces {CMC
ij } and {CCF

ij } are plotted
side-by-side for visual comparison.

Extraction of implied volatility For any obtained price we determine the Black–Scholes implied volatility σimp
ij

as the unique root of
CBS(S0,Ki, Tj , r, σ

)
− Cmodel

ij = 0,

where CBS = S0N(d1) −Kie
−rTjN(d2) and d1,2 =

ln(S0/Ki)+(r± 1
2σ

2)Tj

σ
√

Tj

. Monotonicity of CBS in σ allows us to use

Brent’s method, resulting in two implied-volatility surfaces {σMC
ij } and {σCF

ij }.

2.3.3 Calibration to S&P 500 implied volatilities

The final task is to adjust the five Heston parameters Θ = (κ, θ, ρ, σ, v0) so that the model reproduces the market
implied–volatility (IV) surface of S&P 500 options as closely as possible. The workflow is organised as follows.

(1) Generate model IVs. For any candidate parameter set Θ we evaluate the semi-closed Heston price CCF
ij (Θ) on

the grid, followed by a one-dimensional root-finder to obtain the corresponding model volatilities σHeston
ij (Θ).

(2) Define the calibration objective. We minimise a weighted root-mean-square error (RMSE) on implied vols:

J(Θ) =

√√√√ 1

MN

M∑
i=1

N∑
j=1

wij

(
σHeston
ij (Θ)− σmkt

ij

)2

, wij = 1 or wij =
(
σmkt
ij

)−2
.

The objective is evaluated under positivity constraints κ, θ, σ, v0 > 0 and ρ ∈ (−1, 1).
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(3) Optimisation strategy. A two-stage procedure is adopted: (i) a global search via Differential Evolution for
a robust starting point; (ii) a local, gradient-based L-BFGS-B refinement with analytical gradients supplied by
reverse-mode AD.

(4) Multiple-date calibration. The routine is run independently on at least two trade dates (e.g. 2023-10-31 and
2023-11-02) to assess parameter stability. Optionally, a joint-fit variant with a piece-wise-constant Θ(t) can be
explored.

(5) Diagnostics.

• Visual fit: heat-maps / wireframes of model vs. market IV surfaces.

• Error metrics: RMSE, mean absolute error (MAE), and maximum absolute error across the grid.

• Stability analysis: side-by-side comparison of calibrated Θ across dates, highlighting where the fit deteriorates
(short maturities, deep OTM, etc.).

• Model improvements: discuss possible extensions such as time-dependent parameters, stochastic–jump volatil-
ity, or a SABR-type volatility-of-vol.

This structured pipeline leverages the pricing and IV-extraction modules developed in the previous sections and
provides a quantitative assessment of the Heston model’s ability to replicate the observed S&P 500 volatility smile.

3 Results

3.1 Binary options
3.1.1 Pricing Results via Monte Carlo and Analytical Comparison

We validate the Monte Carlo (MC) method for pricing binary call options by comparing it against the analytical
Black-Scholes solution under the following parameters:

• St ∈ [50, 150], t ∈ [0.001, 0.99]

• K = 100, T = 1.0, r = 0.05, σ = 0.2

Figure 1 shows the option price surfaces from the MC simulation and the closed-form solution. Both exhibit the
sharp transition in price near the strike as maturity approaches, characteristic of digital options.

Figure 1: Binary option pricing surfaces. Left: Monte Carlo. Right: analytical solution.

To assess accuracy, we compute the absolute error between the MC and analytical surfaces. As shown in Figure 2,
errors are localized near S = K and t ≈ T , where the payoff discontinuity dominates.

Quantitative error statistics are summarized below:

Xiaoxuan Zhang (15390802) Ziyi Xing(15386899) Shera Ding(13501380) 10 / 24



Computational Finance Assignment3

Figure 2: Left: Absolute error surface |CMC − Canalytic|. Right: corresponding heatmap.

• Mean Absolute Error (MAE): 0.000231

• Mean Relative Error: 5.4793%

• Max Absolute Error: 0.001553

• Mean Squared Error (MSE): 0.000000

These results demonstrate that the Monte Carlo method produces accurate prices on average, with discrepancies
concentrated near the strike where the payoff is non-smooth.

3.1.2 Comparison of FDM Schemes and Sensitivity Analysis

Based on the parameters shown in 3.1.1, we then compare the performance of the Implicit and Crank–Nicolson (CN)
finite difference schemes in pricing binary options, and further analyze their sensitivity to model parameters such as
volatility σ and underlying price S.

Dirichlet Boundary and Initial Conditions in the FDM Workflow. In our numerical implementation of
the Black-Scholes PDE for binary options, we perform a standard sequence of transformations to reduce the PDE to
the heat equation. Let τ = T − t, x = log(S/K), and define the transformed function ϕτ (x) satisfying

∂τϕτ (x) =
σ2

2
∂2xxϕτ (x),

which is the canonical heat equation. The spatial domain x ∈ [xmin, xmax] corresponds to the log-transformed asset
prices S ∈ [50, 150], with K = 100. Hence,

xmin = log(50/100) = log(0.5) ≈ −0.6931, xmax = log(150/100) = log(1.5) ≈ 0.4055.

We impose Dirichlet boundary conditions by fixing ϕτ (xmin) = ϕ0(xmin) and ϕτ (xmax) = ϕ0(xmax) for all τ ∈ [0, T ],
where ϕ0(x) is derived from the initial condition of the digital option payoff. Specifically, the original payoff at
maturity is

VT (S) =

{
1 if S ≥ K,

0 if S < K,

which translates to ψ0(x) = 1x≥0, and hence

ϕ0(x) = ψ0(x) · e−αx =

{
e−αx if x ≥ 0,

0 if x < 0.
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With α = 2r
σ2 ≈ 2·0.05

0.04 = 2.5, the right-end boundary value evaluates to

ϕτ (xmax) = ϕ0(xmax) = exp(−2.5 · log(1.5)) = 1

1.52.5
≈ 0.3628, and ϕτ (xmin) = 0.

This setup ensures that the heat equation is solved on a finite domain with a well-defined initial condition and
fixed Dirichlet boundaries. These are enforced in both the backward Euler and Crank-Nicolson solvers, and ensure
numerical stability while respecting the theoretical solution structure of the transformed binary option problem.

Pricing and Error Surface Comparison. Figure 3 shows the option price surfaces generated by the two nu-
merical methods. Both surfaces agree well with the expected binary option shape, featuring a sharp transition near
S = K.

Figure 3: Binary option price surfaces using Implicit (left) and Crank–Nicolson (right) finite difference methods.

Figure 4 presents the corresponding absolute error surfaces against the analytical solution. Although the CN scheme
produces a smoother surface overall, a sharp peak near (S = 100, t→ T ) yields a larger maximum error, as confirmed
below.

Figure 4: Absolute error surfaces: Implicit (left) and CN (right) vs. analytical pricing. With K = 100
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Error Statistics.

• Implicit Scheme: MAE = 0.004128, Max Error = 0.1616, MSE = 0.000053

• CN Scheme: MAE = 0.004115, Max Error = 0.207975, MSE = 0.000051

These confirm the superior average performance of CN, but with potential instability near the strike as t→ T .

To better localize the error spike, we plot the heatmaps in Figure 5. The CN heatmap clearly exposes a small
localized region with elevated error amplitude.

Figure 5: Error heatmaps (log-scaled). Left: Implicit vs. analytic. Right: CN vs. analytic. With K = 100

Sensitivity to Option Prices in parameters space. Figure 6 shows the sensitivity of the binary option price
at S0 = 100 to four key parameters: strike price K, time to maturity T , volatility σ, and risk-free rate r. Across all
subfigures, we observe that the results from the implicit FDM and the Crank–Nicolson (CN) method nearly coincide,
highlighting the numerical consistency between these two finite difference schemes.

Panel (a) demonstrates that as K increases, the option price decreases almost linearly, since a higher strike reduces
the probability of finishing in-the-money. In contrast, panel (b) reveals that the option price increases approximately
linearly with r, reflecting the stronger discounting effect favoring binary options due to their all-or-nothing payoff.
Panel (c) shows that increasing σ decreases the option price, which may seem counterintuitive at first. However, for
digital options, higher volatility leads to a flatter price profile and reduces the steepness around the strike, thereby
reducing the overall probability density concentrated near the threshold. Finally, panel (d) presents a concave
response to T : longer maturities increase the chance of reaching the strike, but the marginal benefit of additional
time diminishes, leading to a plateau in the option value as T grows.

Sensitivity to Volatility (Vega). From Figure 7, we observe that binary option prices increase with volatility
σ in a non-linear fashion. Under both implicit and CN schemes, the slope of the price curve around S = K = 100
becomes less steep as σ increases, reflecting the smoothing effect of volatility on the digital option’s discontinuous
payoff structure.

However, the CN scheme exhibits a distinct numerical instability when σ = 0.9, notably at S = K = 100, where the
curve sharply oscillates. This artifact arises due to the higher sensitivity of CN’s centered time-stepping to boundary
and discretization errors in regions of steep gradients. When volatility is large, the transition band of the digital
option broadens and becomes highly sensitive to grid resolution and rounding errors, which may trigger amplified
instability during matrix inversion in CN updates. In contrast, the fully implicit method, being backward in time
and unconditionally stable, remains robust even at extreme volatility levels.

Figure 8 illustrates the numerical Vega. As seen in the plots, for small volatility (e.g., σ = 0.1), the Vega curve
is highly non-linear with strong oscillatory behavior around the strike S = K = 100, reflecting high sensitivity to
volatility changes in that region. As volatility increases, the Vega curve flattens significantly, indicating that the
option becomes less sensitive to changes in σ when volatility is already high.
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Additionally, the CN method exhibits noticeable numerical artifacts near S = 100, particularly when σ is large, such
as σ = 0.9. These localized spikes are not present in the implicit scheme, which suggests that the CN method, while
smoother in general, can be more sensitive to grid resolution or stability issues near discontinuities in the payoff
derivative.

(a) Effect of strike price K (b) Effect of interest rate r

(c) Effect of volatility σ (d) Effect of maturity T

Figure 6: Sensitivity analysis of binary option prices with respect to model and option parameters, evaluated at S0 = 100.
Both implicit and Crank–Nicolson FDM schemes yield nearly identical prices across all parameter regimes.

Figure 7: Sensitivity of binary option prices to different σ under implicit (left) and CN (right) FDM. With K = 100
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Figure 8: Numerical Vega ∂C/∂σ using implicit (left) and CN (right) methods. With K = 100

Sensitivity to Underlying (Delta). Figure 9 displays the estimated Delta ∂C/∂S as a function of stock price
S at fixed time t = 0.50, using both implicit and Crank-Nicolson (CN) schemes under varying volatilities σ ∈
{0.1, 0.2, 0.5, 0.9}. Several key observations can be made:

• For both schemes, Delta exhibits a peaked shape centered near the strike price K = 100, reflecting the sharp
sensitivity of binary options to underlying price movements when S ≈ K.

• As volatility increases, the peak of the Delta flattens. This aligns with intuition: higher volatility blurs the
transition region where the option payoff changes, reducing local sensitivity.

• For the implicit scheme, the Delta remains smooth and well-behaved across all tested σ values.

• In contrast, the CN scheme exhibits oscillations and numerical instability when σ becomes large (e.g., σ = 0.9).
These wiggles occur around S = 100, likely due to the discretization error magnified by the scheme’s semi-
implicit nature in the presence of a discontinuous payoff and high curvature in the pricing surface.

Such differences underscore the practical trade-off between accuracy and stability in finite difference schemes, partic-
ularly for options with discontinuous payoffs. While CN provides second-order accuracy in theory, implicit schemes
may offer better numerical robustness under extreme parameter settings.

Figure 9: Estimated Delta ∂C/∂S for varying volatility σ at t = 0.50, using implicit (left) and Crank-Nicolson (right) FDM.
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3.2 Knock-out Barrier options
3.2.1 Pricing Sensitivity and Convergence via Monte Carlo and Analytical Comparison

Sensitivity Analysis. We first evaluate the sensitivity of the option pricing results with respect to three key
parameters: strike price K, volatility σ, and barrier level B, using the following baseline setup:

• Spot price S0 = 100, strike K = 100, barrier B = 120, maturity T = 1.0

• Volatility σ = 0.2, interest rate r = 0.05

• Monte Carlo parameters: M = 100 time steps, N = 100,000 paths

• Barrier correction factor: β1 = 0.5826

Figures 10 to 12 display comparisons between Monte Carlo and adjusted closed-form prices across different values of
K, σ, and B, respectively. Each set contains two plots: one showing the option price curves, and the other showing
the corresponding absolute and relative error between the two methods.

Figure 10: Sensitivity of option price and error comparison w.r.t. strike price K.

Figure 11: Sensitivity of option price and error comparison w.r.t. volatility σ.

Across all three cases, we observe that the Monte Carlo estimates closely follow the adjusted analytical values. The
absolute error generally remains below 0.2, and the relative error increases when the option becomes deep out-of-the-
money (i.e., when the payoff approaches zero). This is especially noticeable in the right-hand plots, where relative
error spikes at extreme parameter values due to the denominator shrinking.

Overall, the results validate the robustness of the adjusted closed-form method in approximating the discretely
monitored MC estimator across varying option features and market conditions.
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Figure 12: Sensitivity of option price and error comparison w.r.t. barrier level B.

Figure 13: Log-log convergence analysis of Monte Carlo error vs. number of time steps M . Slope ≈ −0.53.

Convergence Analysis. Next, we study the convergence of the MC estimator with increasing time resolution M ,
under the following fixed configuration:

• S0 = 100, K = 100, B = 120, T = 1.0, r = 0.05, σ = 0.2

• Barrier correction: Hadj = H · eβ1σ
√

T/M

• Sample size N = 100,000, repeated 5 times for each M

Figure 13 shows the log-log plot of the average absolute error versus log10(M), along with a linear regression fit. The
resulting slope is approximately −0.53, which is in close agreement with the theoretical convergence rate of O(1/

√
m)

discussed in the Method section.

This result provides strong empirical confirmation of the effectiveness of the adjusted barrier correction. It also
demonstrates that the MC method achieves the expected convergence behavior when pricing discretely monitored
knock-out barrier options.

3.2.2 Implicit FDM vs Closed-Form Barrier Option Pricing and Sensitivity Analysis

To validate the accuracy of our implicit finite difference method (FDM) for pricing up-and-out barrier call options,
we first compare its pricing surface with that of the analytical closed-form solution.

For this comparison, the following parameter values are used:

• Spot price S0 = 100, strike price K = 100, barrier level B = 120
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• Maturity T = 1.0, interest rate r = 0.05, volatility σ = 0.25

• Asset price range S ∈ [50, 150], grid resolution N = 100 (space), M = 100 (time)

Figure 14 shows the resulting 3D surfaces of option prices C(S, t) as functions of asset price and time.

(a) Implicit FDM surface (S0 = 100,K = 100, B = 120, σ = 0.25) (b) Closed-form solution surface (same parameters)

Figure 14: Comparison of pricing surfaces C(S, t) between implicit FDM and closed-form under identical parameter setup.

We observe strong visual agreement between the two surfaces, particularly in the interior region before the barrier
S < B. This validates the correctness of our FDM discretization and implementation for pricing the barrier option.

Next, we conduct a sensitivity analysis over three key parameters: the barrier level B, strike price K, and volatility
σ. In each case, we vary one parameter while keeping others fixed at:

T = 1.0, r = 0.05, S0 = 100, S ∈ [20, 140], N =M = 200.

The specific parameter ranges explored are:

• K ∈ [80, 120], in 9 equally spaced values

• B ∈ [105, 140], in 8 equally spaced values

• σ ∈ [0.1, 0.5], in 9 equally spaced values

Figure 15 shows the pricing behavior with respect to each parameter, comparing closed-form vs FDM and visualizing
the absolute error.

All three plots exhibit expected financial behaviors. As K increases, the option price decreases due to higher exercise
cost. As B increases, the knock-out probability decreases, leading to higher prices. Greater volatility σ enhances the
probability of reaching deep in-the-money regions, also increasing option value. The implicit FDM solution closely
tracks the analytical one, with small deviations due to discretization.

Lastly, seen Figure 16, we examine the option’s sensitivity with respect to the underlying asset price S, via the delta
∆ = ∂C/∂S curve. This is computed both from the FDM price grid and by applying centered finite differences to
the closed-form solution. The parameters used are:

• K = 100, B = 120, T = 1.0, r = 0.05, σ = 0.25

• S ∈ [50, 150], with fine resolution N = 300, M = 200

The delta curve reflects the complex nature of barrier options: sensitivity increases when S is moderately below B,
and abruptly drops to zero at the barrier. This is correctly captured by both methods. The sharp discontinuity at
S = B further confirms the barrier’s impact, and the smooth agreement before the barrier showcases the robustness
of our FDM scheme.
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(a) Varying Barrier Level B (b) Varying Strike Price K

(c) Varying Volatility σ

Figure 15: Sensitivity analysis: option price behavior vs parameters (B, K, σ), comparing implicit FDM vs closed-form with
absolute error shown.

Figure 16: Comparison of delta ∆ = ∂C
∂S

curves from implicit FDM and closed-form method (centered difference), under
parameter setup K = 100, B = 120, σ = 0.25.
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3.3 Calibration SP500 Implied Volatility using the Heston Model
3.3.1 Vanilla option pricing experiments

Figure 17: Raw SP500 implied volatility surface (log-moneyness vs maturity) on 2023-11-01.

We begin our experiments by visualising the SP500 market data on 1 Nov 2023, specifically the raw implied volatility
surface as a function of moneyness and maturity. The raw dataset is extracted from raw_ivol_surfaces.npy, where
each smile is plotted with respect to log(K/S0). Since the actual spot price S0 is not directly available, we estimate
it heuristically by selecting the strike K∗ with the lowest implied volatility at the shortest maturity (i.e. T ≈ 0). This
choice corresponds to the local minimum of the volatility smile, and serves as a natural proxy for the forward-adjusted
spot. The resulting inferred value is:

Sguess
0 = 4449.753

This guess is used to convert all strikes into standardised log-moneyness coordinates, forming the surface shown in
Figure 17.

Next, we simulate vanilla European call prices under the Heston model, using the following fixed parameter set:

θ = 0.05, κ = 2.5, σ = 0.4, ρ = −0.3, V0 = 0.04, S0 = 100, r = 0.04. (2)

The option prices are computed over a two-dimensional grid consisting of:

• 15 strikes, uniformly spaced from K = 80 to K = 225;

• 15 maturities, linearly spaced from T = 0.1 to T = 3.0.

Call-price surfaces are then generated using two pricing engines:

(i) a Monte Carlo engine based on the Quadratic–Exponential (QE) scheme, with N = 250,000 simulated paths
per option;

(ii) the semi-closed form solution derived from the Heston model’s characteristic function.

Figure 18 shows both surfaces side-by-side. They exhibit consistent shape and scale, validating the correctness of
the Monte Carlo engine against the analytical benchmark.
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(a) Monte Carlo simulation (QE scheme) (b) Semi-closed-form Heston

Figure 18: Call-price surfaces generated from the Heston model using two pricing methods.

To facilitate implied-volatility comparisons, we invert the Black–Scholes formula to extract the implied volatilities
associated with each call price. Figure 19 presents the two implied-vol surfaces. While Monte Carlo simulation
introduces minor surface irregularities, particularly in short-maturity or far-from-the-money regions, the global shape
and skew are consistent with the semi-closed-form counterpart and the original market surface.

(a) Implied vols from Heston–MC prices with path = 250, 000 (b) Implied vols from Heston–analytic prices

Figure 19: Black–Scholes implied volatility surfaces extracted from Heston-generated call prices.

3.3.2 Calibration to SP500 implied volatilities

To assess the Heston model’s ability to fit market-observed implied volatility (IV) surfaces, we perform calibration on
two SP500 trading dates: 2023-11-01 and 2023-11-03. The calibration objective is defined as the root-mean-square
error (RMSE) between model-generated implied volatilities and the market-observed values, uniformly weighted.

Calibration Methodology. We employ a least-squares optimization using scipy.optimize.minimize with the
L-BFGS-B algorithm. The following initial guess and parameter bounds are used:

Initial guess: [κ, θ, σ, ρ, V0] = [2.5, 0.05, 0.4,−0.3, 0.04]

Bounds: κ ∈ [0.1, 10], θ ∈ [0.01, 0.5], σ ∈ [0.05, 1.0], ρ ∈ [−0.99, 0.99], V0 ∈ [0.001, 0.2]

For each date, the market strike and maturity grid is standardized using a guessed spot price (estimated from
short-tenor ATM volatility minimum). The model is run under fixed S0 = 100, and moneyness alignment ensures
parameter consistency between model and market.
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Fitted IV Surfaces. The fitted implied volatility surfaces obtained using the optimal parameters are shown below:

(a) Fitted IV Surface on 2023-11-01 (b) Fitted IV Surface on 2023-11-03

Figure 20: Heston model-fitted implied volatility surfaces on two SP500 dates.

Calibration Results. The resulting parameter estimates and error diagnostics are summarized below:

• 2023-11-01:

– Optimal parameters: κ = 2.094, θ = 0.0439, σ = 1.000, ρ = −0.625, V0 = 0.028

– RMSE = 0.0214, MAE = 0.0135, Max Error = 0.0993

• 2023-11-03:

– Optimal parameters: κ = 2.002, θ = 0.0414, σ = 1.000, ρ = −0.681, V0 = 0.0399

– RMSE = 0.0305, MAE = 0.0175, Max Error = 0.1548

Residual Diagnostics. To identify regions of model under/overfitting, we visualize the residuals between model-
generated and market-observed IVs.

(a) Residuals on 2023-11-01 (b) Residuals on 2023-11-03

Figure 21: Heatmaps of model-market IV residuals. Positive values indicate model overestimation.

Parameter Stability and Fit Deterioration. To examine model robustness across time, we performed Heston
parameter calibration on three distinct trade dates. The resulting optimal parameters are visualized in Figure 22.
The key parameters — κ, ρ, and σ — exhibit remarkable stability across all dates, with only minor variations. This
consistency suggests that the model captures persistent market dynamics. In contrast, the mean-reversion level θ
and the initial variance V0 display slight fluctuations, reflecting adaptations to shifting volatility regimes.
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Figure 22: Optimal Heston parameters calibrated across dates 2023-11-01, 2023-11-02, and 2023-11-03.

The residual heatmaps (see Figure 21) reveal characteristic patterns of model mismatch. While the Heston model
accurately captures the implied volatility smile around at-the-money strikes and mid-term maturities, the following
issues arise:

• Short maturities. For options with very short time-to-maturity (T < 0.25), the model tends to underfit the
sharp skew observed in deep OTM options. This is especially visible in the top-left and top-right corners of
the residual heatmaps.

• Extreme strikes. Maximum fitting errors concentrate at the edges of the moneyness range, both in deep
in-the-money and deep out-of-the-money regions. These discrepancies highlight the Heston model’s limitations
in extrapolating extreme tail behavior.

• Temporal variation. Comparing residuals on November 1 and 3, the model exhibits slightly larger errors
on November 3, with the RMSE increasing from 0.021 to 0.031. This degradation may stem from increased
market volatility or irregularities in the observed smile shape.

Model Extensions. While the classical Heston model successfully captures the volatility smile and term struc-
ture of implied volatilities under normal market conditions, it struggles to fit short-term skews and extreme strike
behaviors, as observed in our residual diagnostics. One natural extension is to incorporate jump components into
the underlying asset price process.

A prominent example is the Heston–Jump model, which augments the standard stochastic volatility dynamics with
a compound Poisson process to capture discontinuous price movements. This approach is supported by the work of
Duffie, Pan, and Singleton Duffie et al., 2000, who demonstrate that combining stochastic volatility with jump risk
significantly improves fit to short-maturity option prices and extreme-strike implied volatilities.

Such jump-diffusion models allow greater flexibility in capturing the heavy tails and sudden shifts observed in
empirical returns, thereby reducing the persistent misfit observed at the boundaries of our implied volatility surface.
Moreover, the characteristic function framework of the original Heston model naturally extends to this jump setting,
preserving numerical tractability for calibration and pricing.

4 Conclusion

4.1 PDE Methods: Binary and Barrier Options
The analytical solutions for both binary and barrier options offer reliable benchmarks, with the numerical methods
showing good agreement across most of the domain. For binary options, the FDM schemes capture the correct
surface shape, with Crank-Nicolson producing smoother results, albeit with sensitivity near payoff discontinuities.

In the barrier case, MC simulations closely match the closed-form values, particularly when the barrier correction
is applied. Pricing errors are small except near vanishing payoffs. Convergence tests confirm the expected rate of
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O(1/
√
M) with increasing time steps.

Together, these experiments highlight the strengths and trade-offs of numerical techniques when applied to discon-
tinuous or path-dependent payoffs, reinforcing the need for careful discretization, boundary handling, and theoretical
consistency in financial option pricing.

4.2 Calibration SP500 Implied Volatility using the Heston Model
We have systematically implemented the Heston stochastic volatility model across both theoretical and empirical
tasks. In the vanilla pricing experiments, we confirmed that the semi-closed formula and Monte Carlo methods yield
consistent call-price surfaces. Using inverse Black–Scholes transformation, we recovered implied volatility surfaces
that qualitatively match the stylized smile and skew observed in markets.

For the calibration task, we optimized Heston parameters over two SP500 trading dates (2023-11-01 and 2023-11-03).
The calibrated models achieved reasonably low RMSE values (0.0214 and 0.0305), and residual diagnostics showed
that the model fits are most accurate in the near-the-money and mid-maturity regions. However, performance
deteriorates at short tenors and extreme moneyness—a known limitation of the standard Heston framework.

Parameter trajectories across dates were found to be relatively stable, particularly for the key long-term mean θ,
speed of mean reversion κ, and correlation ρ. This suggests robustness in capturing structural volatility features.
Nevertheless, higher errors in certain regions motivate model extensions such as time-dependent coefficients or jump
components, which can better account for observed skews and short-term volatility bursts.

This part of study demonstrates the Heston model’s practical effectiveness while highlighting calibration challenges
and the necessity of model refinements for high-fidelity fitting.
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